Large quantities of Abeta peptide are constitutively released during amyloid precursor protein metabolism in vivo and in vitro.
نویسندگان
چکیده
The metabolism of the amyloid precursor protein (APP) has been extensively investigated because its processing generates the amyloid-β-peptide (Aβ), which is a likely cause of Alzheimer disease. Much prior research has focused on APP processing using transgenic constructs and heterologous cell lines. Work to date in native neuronal cultures suggests that Aβ is produced in very large amounts. We sought to investigate APP metabolism and Aβ production simultaneously under more physiological conditions in vivo and in vitro using cultured rat cortical neurons and live pigs. We found in cultured neurons that both APP and Aβ are secreted rapidly and at extremely high rates into the extracellular space (2-4 molecules/neuron/s for Aβ). Little APP is degraded outside of the pathway that leads to extracellular release. Two metabolic pools of APP are identified, one that is metabolized extremely rapidly (t1/2;) = 2.2 h), and another, surface pool, composed of both synaptic and extrasynaptic elements, that turns over very slowly. Aβ release and accumulation in the extracellular medium can be accounted for stoichiometrically by the extracellular release of β-cleaved forms of the APP ectodomain. Two α-cleavages of APP occur for every β-cleavage. Consistent with the results seen in cultured neurons, an extremely high rate of Aβ production and secretion from the brain was seen in juvenile pigs. In summary, our experiments show an enormous and rapid production and extracellular release of Aβ and the soluble APP ectodomain. A small, slowly metabolized, surface pool of full-length APP is also identified.
منابع مشابه
In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life.
Soluble amyloid-beta (Abeta) peptide converts to structures with high beta-sheet content in Alzheimer's disease (AD). Soluble Abeta is released by neurons into the brain interstitial fluid (ISF), in which it can convert into toxic aggregates. Because assessment of ISF Abeta levels may provide unique insights into Abeta metabolism and AD, an in vivo microdialysis technique was developed to measu...
متن کاملProtein kinase C activation increases release of secreted amyloid precursor protein without decreasing Abeta production in human primary neuron cultures.
Overexpression and altered metabolism of amyloid precursor protein (APP) resulting in increased 4 kDa amyloid beta peptide (Abeta) production are believed to play a major role in Alzheimer's disease (AD). Therefore, reducing Abeta production in the brain is a possible therapy for AD. Because AD pathology is fairly restricted to the CNS of humans, we have established human cerebral primary neuro...
متن کاملBeta-amyloid catabolism: roles for neprilysin (NEP) and other metallopeptidases?
The steady-state level of amyloid beta-peptide (Abeta) represents a balance between its biosynthesis from the amyloid precursor protein (APP) through the action of the beta- and gamma-secretases and its catabolism by a variety of proteolytic enzymes. Recent attention has focused on members of the neprilysin (NEP) family of zinc metalloproteinases in amyloid metabolism. NEP itself degrades both ...
متن کاملEndocytosis Is Required for Synaptic Activity-Dependent Release of Amyloid-β In Vivo
Aggregation of amyloid-beta (Abeta) peptide into soluble and insoluble forms within the brain extracellular space is central to the pathogenesis of Alzheimer's disease. Full-length amyloid precursor protein (APP) is endocytosed from the cell surface into endosomes where it is cleaved to produce Abeta. Abeta is subsequently released into the brain interstitial fluid (ISF). We hypothesized that s...
متن کاملDifferential effects of interleukin-1β and S100B on amyloid precursor protein in rat retinal neurons
PURPOSE Interleukin-1beta (IL-1beta) and S100B calcium binding protein B (S100B) have been implicated in the pathogenesis of Alzheimer's disease. Both are present in and around senile plaques and have been shown to increase levels of amyloid precursor protein (APP) mRNA in vitro. However, it is not known how either of these substances affects APP in vivo. METHODS We have studied the effects o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 286 18 شماره
صفحات -
تاریخ انتشار 2011